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GENERATING THE STATES OF A PROBABILISTIC SYSTEM

D. R. Shier

E. J. Valvo

R. E. Jamison
.5

Department of Mathematical Sciences

Clemson University

Clemson SC 29634

Abstract. An important task in the evaluation of a communication or distribution

system is assessing the performance of the system, when its components are

subject to random failure. One approach for approximating various such

performance measures is to generate a relatively small set of states of the

system that covers in probability a large portion of the state space. Specifically,

one would like to generate the states of the probabilistic system in order of

nonincreasing probability. Rather interestingly, there is an elegant algebraic

structure (a lattice) underlying this problem, and this structure can be exploited

to produce a relatively effective algorithm for generating in order the states of the

given system. In addition, the worst-case computational complexity of the

algorithm is shown to be related to a certain algebraic invariant of the lattice.

Key words. algorithm, lattice, graph, partial order, probability, reliability

AMS (MOS) subject classifications: 06A10, 62N05, 68M20 .

%%,

• ." ." P . ,P . ' . ." ." . ." .° " = ," ." = • ." /" , . ,, .. ° . ., ." q .% .%.- ." " ,'%Z , .' 4 . .""." .''.'



1. Introduction

It is frequently of interest to evaluate the performance of a system, such as

a communication or distribution system, which is composed of failure-prone

components. Since the analytic calculation of most realistic performance

measures (throughput, delay, reliability) is in general difficult, there is reason to

investigate methods for approximating such measures. One approach for

obtaining approximations involves generating a relatively small subset of the

system's states that nevertheless "covers" in probability a large portion of the

state space. Specifically, we consider here procedures for generating the states

of the probabilistic system in order of nonincreasing probability. (As will be later

seen, this can be accomplished without examining the entire state space.) Once -

this has been done, it is not difficult to obtain bounds on various performance

measures for the system [5]. An attractive feature of this approach is that lower

and upper bounds can be generated at each step, and the whole process of

generating states in nonincreasing order can be continued until the bounds

become sufficiently close.

U and Silvester [5] discussed the application of this approach to several

performance measures arising in the analysis of computer networks. They

provided an O(n 2k + nk log k) algorithm for generating the k most probable

states of a system with n components, where k must be specified in advance. An

improved algorithm, that does not require k to be specified in advance, was

subsequently given by Lam and Li [4]. This algorithm, with an O(nk + k log k)

complexity, provides an order of magnitude improvement over the previous

procedure.

Rather surprisingly, there is an elegant algebraic structure (a lattice)

underlying the state space, as discussed in Section 2. This structure can in fact

,, , ., ,, . ., ,,= , , , . , - . , ,. -, -. - ,. ,- . .- .' .. '. . . .. .. . .. .. .. . - " ... ., .'.. . . . "." .0
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be exploited to produce an algorithm for generating the most probable states of

the given system, without the need to examine the entire state space. Section 3

discusses the details of this algorithm and shows how it dominates the method

of [4]. In addition, the worst-case computational complexity of the algorithm is

shown to be related to a certain algebraic invariant of the lattice. In Section 4,

computational experience with an implementation of the algorithm is described.
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2. Structure of the State Space

Consider a system with n failure-prone components 1, 2, ..., n, assumed to

be independent of one another. Component i is in the operational mode with

probability pi, and in the failed mode with probability qi = 1 - pi. Moreover, it is

supposed that the components have been ordered so that

(1) 1/25 < :P P2:5 ... Pn! 1 .

Thus, the components are ordered from least reliable to most reliable and the

ratios Ri = q/pi are thereby placed in nonincreasing order:

(2) 1 :> R 1 > R2 > .  Rn >0.

Each state of the system corresponds to a subset X of the set of

components K = {1, 2, ..., n}, where the elements of X represent the failed

components in that state. The collection of all states, known as the state space,

is denoted by S = Sn. Note that S has 2n elements since it is the power set of K.

Every state X e S has an associated probability p(X) given by

P(X) = PI T1q j
.5.' je EX

n

-(11p) flR
i-1 jIEX

n
(3) - ([JJp) R(X),

where

R(X) = 1R.
e j

I " "-" "." ". . '",".'.'. ,'"".".".""."." ",". '.''" " ". ."'"."" " .""'"." ? ,. -"- " . " . '.'"'"."." "-''"'".". '-'
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Throughout, R(X) will be called the R-value associated with state X. The special

case when X = 0 (that is, when all n components are operational) will be

assigned the R-value Ro = 1, consistent with equation (3).

The objective here is to generate the states X in order of nonincreasing

probability p(X). It will be seen that simply knowing the ordinal information

conveyed by (1) provides considerable information about the probabilities of the

various states. To clarify this connection, we define, for any two states Xi, Xj e S,

the relation Xi > X if P(Xi) > p(Xj) holds for all values pi satisfying (1). It is then

straightforward to show the following.

Property 1. The set S of all states forms a partially ordered set (S, >).

We can represent the poset (S, >) as a (directed) graph in which each

state XE S corresponds to a node of the graph, labeled by the elements of the

state that it represents. Namely, state X = (i1 , i2 .... ik} e S, where il <i 2 < ... <ik'

has an associated node labeled i1i2 ". -ik . The special state X = 0 corresponds to

the node 0.

If Xi > Xi holds then an arc is drawn between the corresponding two nodes

in the graph. Note that by equation (3) comparing p(Xi) with p(Xi) is equivalent to

comparing R(Xi) with R(X), so that the R-values of states completely determine

the arcs of the graph. To illustrate this important observation, consider the graph

of the poset (S2 , >). An arc extends from node 1 to node 2 in this graph, since R,

- R2. In a similar way, an arc joins node 1 to node 12 because R2 5 1. The

resulting graph of the poset (S2, >) is shown in Figure 1. Notice that in this

", particular case, the nodes are totally ordered: 0 > 1 ! 2 > 12, meaning that the

states are ordered (from most probable to least probable) as 2 (1}2! (2) > (1,2).

The graph of the poset (S, >) can be displayed more clearly by removing

all arcs that are implied by transitivity, yielding its Hasse diagram [2]. For
4.

-,,,
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example, the poset in Figure 1 has the Hasse diagram shown in Figure 2.

However, the Hasse diagram of the poset (S3, ),shown in Figure 3, is not a

total order.

Figure 1

0I

Figure 2
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Figure 3

In general, the Hasse diagram for n components is comprised of 2n nodes,
one for each state of the system. The 2n nodes are arranged into n+1 levels

such that level j, for j = 0,...,n, contains () nodes.

Each node on level j corresponds to a state with exactly j failed

components. In particular, level 0 contains exactly one node (node 0),

representing the state in which all components are operational, while level n

contains exactly one node (node 12 ...n), representing the state in which all

components have failed.

The arcs of the Hasse diagram can be separated into two different

categories: arcs within a given level and arcs between two consecutive levels.
.....""- Within level j (j = 1,..., n-1), an arc extends from node k,..ki~l k to node

kl-..ki-iki+l ... k provided kj+1 and k,+i are distinct and ki+1 < n. Between two

consecutive levels j and j+1 a = 0,...,n-1), an arc extends from each node

k,k 2 ."ki on level j, with k1*1, to the node 1 k1k2 ...kj on level j+1. Figures 3 and 4

show the Hasse diagrams for the n = 3 and n = 4 cases, respectively, obtained

by the above construction.

w"e

.,

.'
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~Figure 4

Property 2. The total number of arcs in the Hasse diagram for n

components is (n+l )2n2.

Proof. First we count the number of arcs within each level j, for

j= 1...,n-1. Recall that within a level there is an arc from node k1 -.--. k to

node k1 ""ki+l" " provided k1+1 and ki+ 1 are distinct and k1.+l n. We now count

the number of valid nodes that admit an outgoing arc of this type. Since ki < n-1

,.- there are n-i choices for k1. The remaining j-1 integers of the label cannot equal

" I either k1 or k,+l. Therefore, there are only n-2 integers from which to choose the

remaining i-1 integers, yielding j.1 such valid "origin" nodes with this designated

k.. Hence the number of arcs within level j is (n-l)('j-) and the total number of

within-level arcs is

% .. . . . . . . . . .,.*.. .

. .'U *

-0

2# 3 4
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n-1

(4) n-1) :

Between levels j and j+1 there is an arc from each node kk 2 . -k, on

level j to node 1 k1k2 ... nn level j+1 if k1*1. Only those nodes in level j which do

not contain a 1 in their label will have an arc to a node on level j+1. Since there

are (n l) such nodes, the total rumber of between-level arcs is

n-1

(5)n 1
j-0

Thus, the total number of arcs M is given by

n-1 n-1

j-u j-1

= 2n1 + (n-1)2 n 2

= (n+1)2 n 2.

Hence the total number of arcs in the Hasse diagram is (n+1) 2 n2, as claimed. .

An interesting feature of the Hasse diagram based on n > 2 components

is that it contains two copies of the Hasse diagram on n-1 components. One of

the copies is comprised of all nodes in which component n is operative. In fact

this copy is an exact duplicate of the Hasse diagram for the n-1 component

system. The second copy contains all nodes in which component n has failed.

The labels in this copy simply have the integer n adjoined to the end of each

label in the first copy. In particular, since node 0 corresponds to the empty set,

node 0 in the first copy corresponds to node n in the second copy. Using this

- "duplication" fact and Property 2, it is easy to show the following.

5'B

4* . . ...
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Property 3. In the Hasse diagram based on n components, there are

2n-2 arcs joining the two copies of the Hasse diagram based on n-1 components.

The Hasse diagram of the 4 component system shown in Figure 5

illustrates the above duplication feature. The two copies of the Hasse diagram

for 3 components are shown with solid lines (heavy and medium), while the arcs

joining the copies are shown as dotted lines. As predicted, there are 24.2 = 4

arcs joining the two copies.

The poset (Sn, >) has been studied in other contexts [6,7,9], and further

properties are now briefly mentioned. Several of these will be useful in the

subsequent discussions of Section 3. First, the poset forms a distributive lattice

[9]. Essentially, it is a sublattice of the Cartesian product of n chains (totally

ordered sets), i:. id hence is distributive. Moreover, the lattice can be ranked:

namely, it can be decomposed into subsets PO, P1, ..., Ph, such that arcs of the

Hasse diagram only join nodes in consecutive sets Pk* The rank of any node is

simply the sum of the integers comprising its label [7]. Thus, node 0 has rank 0,

node 12 ..n has rank n(n+l )/2, and so the lattice has a height (maximum rank) h

= n(n+l)/2.

In an n component system with height h, let r = (ro, rl,..., rh) be its rank

vector, with ri = IPiJ signifying the number of nodes having rank i. As shown in

[6,9], the rank vector is symmetric and unimodal. For example, the Hasse

diagram in Figure 6 shows the rank of each node in the lattice describing a 3

component system. The height of the lattice is 6 and the rank vector is

Ur

-,L
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3. An Algorithm for State Generation

Once the state space has been identified as a poset, it is not difficult to

formulate an algorithm for generating, in order, the most probable states of the

system. This section describes the algorithm, which conceptually works on the

Hasse diagram, and then compares it to existing procedures for solving this

problem. We also determine a worst-case upper bound on the complexity of our

algorithm, which is related to a certain invariant of the underlying partial order.

In the Hasse diagram for a poset, let the indegree of a node be the number

of nodes (or predecessors) that cover the given node: i.e., the number of arcs

entering that node in the Hasse diagram. Any (finite) poset contains at least one

node with indegree 0. In our particular case, (Sn, >) contains a single such node

(namely, node 0), and it corresponds to the most probable state of the system.

When this node is removed from the Hasse diagram, there will be at least one

node in the reduced Hasse diagram with indegree 0. More generally, when the

k most probable nodes have been removed from the Hasse diagram, there will

remain some nonempty set C of nodes having indegree 0 in the reduced Hasse

diagram. Any two such nodes (states) X, Y in C must be incomparable in the

original partial order: i.e., neither X > Y nor Y > X holds. All such nodes are

candidates for the next most probable state. Therefore, the partial information

embodied in (1) is not sufficient to order the probabilities of the states

represented in C; however, by comparing R-values, the next most probable state

(selected from C) can be determined.

The general idea of the algorithm, then, is to at each step remove from C a

node X with largest probability and then update the candidate set C, since the

removal of X (including its arcs) may create new nodes with indegree 0.

Namely, any successors Y of X (having X as a predecessor) will have their

...... "," ......... .7 %. .,, j .,=..,.._...~~ ~~~... . .......",% , . ... ... ,.... ... ...,: ... , .. ,.Z. ,..'1
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indegree reduced by 1. In order to avoid looking at the entire partial order, it is

useful to keep and update an active set A, which contains those nodes in the

Hasse diagram having a predecessor that has already been removed from the

Hasse diagram. A node is transferred from the set A to the candidate set C

whenever its indegree'decreases to 0. This process of successively removing

nodes from C and updating the relevant sets can be continued until all states in

Sn have been generated in order. More typically, however, the process is

continued until some stopping criterion is satisfied. For example, termination

may be governed by achieving some desired "coverage" of the state space. In

our algorithm, termination occurs after a certain percent coverage R has been

obtained, the percent coverage being the sum of the probabilities of the most

probable states generated so far [5].

The procedure described above yields an algorithm to generate the most

probable states in order of (nonincreasing) probability. The steps of algorithm

GENERATE are summarized below.

Algorithm GENERATE

in0,d: Number of components (n), percent coverage desired (n), and
component probabilities (p, ... , Pn) consistent with (1).

.u±put: States in order of nonincreasing probability until the specified
percent coverage is obtained.

1. [Initialization]

Zero := 0; Last:= 12...n;

X :- Zero; C :- *; A :=

Done := false; Sum:" 0;

Output: X;
a,

'*%.- .- ,. -.. -- -. -. .... %..* .. ' V.. ' .,* ....-..~ ". '.' , ' ', • ' " .,.',';" '.'," - .' ;. ,".."-,"- ."- 3 ''' . - '.'3-
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2. While (not Done) and (Sum < x) do

Begin

Sum := Sum + p(X);

If X = Last then Done :- true

Else Begin

2.1 Find successors of X, place them on A (if not already

present) and update their indegrees;

2.2 Remove all nodes with indegree 0 from A and place

them on C;

2.3 Determine and delete the node X e C having the largest

R-value;

2.4 Output: X;

End;

End.

We illustrate the workings of algorithm GENERATE on a 3 component

system with P1 = .7, P2 - .8, and P3 = .9. Figure 7 shows the sequence of

reduced Hasse diagrams encountered, as well as the status of the candidate list

and the active list (before and after Step 2.2). It should be observed that there is

only one place (indicated by an asterisk) in which a single arithmetic

comparison is needed among the R-values to determine the next state

generated. In fact, for any 3 component system, at most one comparison is ever

needed to generate the states in order, showing that the simple ordering of

components according to (1) provides a good deal of useful information.

Ii
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We now establish some properties of the sets used in algorithm

GENERATE. Let D denote the set of elements deleted from the poset at some

step of the algorithm; thus, the states in D have already been correctly generated

in order. The neighborhood of D in (Sno 2!) is defined as r(D) -(X D : X has a

-. . ~ - °.

• ,- .,.
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predecessor YE DI and equals C u A. A set K c Sn is termed convex [3] if for

any X, ZE KandYe Sn then X > Y >Z impliesYe K.

Lemma 1. The set D is a convex subset of Sn.

Proof. Suppose X, Z e D with X > Y > Z. Since Y is more probable than Z it

must be removed before Z. Because Z e D, it follows that Y c D. .

Theorem 1. At ar step of the algorithm, I"(D)I 5 ID1.

Proof. We establish a one-to-one mapping from "(D) to D. Suppose that

node X is in F(D). Then X = ili i *- i -it has some predecessor Y E D, say Y =

23 - im-1 ... it. (If there are several predecessors, the choice can be made

arbitrarily.) Now define the map v: "(D) -+ D using V(X) w ili2 i3 .- ira1 r+1 -' it

Note that 0> (X) > Y, where node 0 is the most probable state; since 0, Y 6 D

then the convexity of D yields that W(X) e D.

Now suppose that there is some X' e r(D), X' * X, with V(X') = .V(X). Then

X' must have a predecessor Y' e D, which we assume has the form

Y l 3  ...'- 1 ira+ 1 "'" ir., k ir ... it-

(A similar argument governs other placements of the index k.) Since the indices

satisfy im < im+1 < ... <ir.1 <k<ir< ... < it , it can be verified that Y > X > Y' holds.

Again by the convexity of D and the fact that Y, Y' D 0 it follows that X e D, a

contradiction. Thus, the map is one-to-one and the stated result follows. *

In order to implement algorithm GENERATE in an efficient manner, it is

useful to maintain the candidate set C as a heap [8] and the active set A as a

hash table [1]. In this way, selection and deletion of the most probable node

.' ' - - '-; .; '-' '- .'- .. .. '. ... ..... .... . ..-. .-" -"* -- '- .., ........ >... -. 0 : r : * : "* '
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from C (Step 2.3) can be done in time logarithmic in the size of the current

candidate set. Using a hash table generally allows the insertion and the

location of an element in constant time. Since there can be at most O(n)

successors of a given node, the remaining steps can be carried out in O(n) time

per deleted node. Thus, if a total of k nodes (states) are output before

termination of the algorithm occurs, then the computational complexity of

algorithm GENERATE can be expressed as O(nk + k log m), where m is the

maximum size of the heap occurring during execution of the algorithm.

By Theorem 1, we do know that ICI is in general less than k, and so a

(weak) upper bound on m is k. As a matter of fact, the algorithm of Lam and Li

[4] also uses a heap whose maximum size is k, yielding the k log k term in their

complexity estimate O(nk + k log k). Thus, Theorem 1 shows that our algorithm

dominates that in [4] in both computational effort and storage, since our

candidate set is (in the worst case) smaller than the corresponding set used in

the algorithm of Lam and U. In order to get a sense of the difference between

the sizes of these sets in practice, we summarize the results of running the two

algorithms on the specific example with p, = .55, P2 - .6, P3 M .7, P4 W .8, P5 = .9

(the results obtained here are typical). Table 1 shows for this example (run until

a coverage of x - 0.90 was achieved) the sizes of the respective candidate sets

along with the most probable state output at each iteration. Notice that it

required the generation of 16 states to obtain a 90% coverage of the state

space. The candidate set for GENERATE stays much smaller than the

corresponding set used in [4]. Moreover, the active list required for our algorithm

required a maximum size of 4 in this example. These findings, that neither the

active list nor the candidate list in GENERATE become very large, are confirmed

by the empirical results presented in Section 4.

.4-L% -. L
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SIZE OF CANDIDATE SETS

Iteration Lai and Li GENERATE Most Probable State
- - 0

0 11
1 2 1 2
2 3 2 12
3 4 1 3
4 5 2 13
5 6 2 23
6 7 2 4
7 8 3 123
8 9 2 14
9 10 2 24

10 11 3 124
11 12 2 5
12 11 2 34
13 12 2 15
14 11 2 134

Table 1

The computational complexity of algorithm GENERATE, both theoretically

and empirically, is determined in large part by the effort needed to process the

candidate set C. While Theorem 1 provides the upper bound k = IDI on the

maximum size of the set C, we now explore an alternative upper bound related

to the structure of the poset (Sn >).

An important observation, made earlier, is that all elements in C must be

incomparable in the partial order; since they all have indegree 0 in the reduced

Hasse diagram, no two can lie on the same chain. In other words, the elements

of C form an antichain [2] in the poset. Thus, an upper bound on the maximum

size m of C is the size gi of the largest antichain in (Sn, >).

Stanley [9] and Proctor [6,7] have studied in other contexts this same

poset, referred to as M(n), and have shown some rather deep results concerning

its structure. Specifically, as mentioned earlier, the elements of the poset can be

partitioned into sets Pi of rank i. Moreover, the poset is Spemer, meaning that

° .
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the size of the largest antichain is the same as the maximum size of the sets P.

Since the poset is rank unimodal and rank symmetric [6,9], a maximum-sized

antichain occurs for a set Pi at the half-height 8 of the lattice: namely, at rank

8 -- =-•

As a result, we obtain an upper bound g' = IP6I on the maximum possible

size of the candidate set. Since the rank of a node ii 2 - it is simply the sum of

its constituent integers ij, another way of expressing this upper bound I is as the

number of partitions of 8 into distinct parts, none of which exceed n. Table 2

shows the values of g for the range n = 5, 6, ..., 25. Also shown in the table is the

actual maximum size of the candidate list that occurred for typical examples

having the indicated number of components and which were run until 95%

coverage was obtained. While the upper bound g grows rapidly, it appears to

be a vast overestimate of the value observed in practice, especially for larger n.

This suggests that the empirical behavior of algorithm GENERATE may be

considerably better than its worst case behavior. In order to explore the

empirical performance of the algorithm, the next section presents results

obtained by executing the algorithm on a series of test problems.

'"

.i. '/
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5,

Maximum Size
n U j Observed W-
5 7 3 3
6 10 5 3
7 14 8 5
8 18 14 5
9 22 23 5

10 27 40 9
11 33 70 11
12 39 124 14
13 45 221 20
14 52 397 28
15 60 722 39
16 68 1314 45
17 76 2410 63
18 85 4441 97
19 95 8220 133
20 105 15272 183
21 115 28460 258
22 126 53222 355
23 138 99820 408
24 150 187692 577
25 162 353743 809

Table 2
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4. Computational Results

In this section, we assess the empirical computational complexity of

algorithm GENERATE. In addition, these computational results indicate how the

number of states needed to obtain a specified coverage x and how the size of

the candidate set grow with n. A series of examples were analyzed in which the

set of pi's defining the n-1 component system is a subset of the set of pi's for the

n component system (n = 5, 6, .... 25). All of the experimental data were

obtained using an implementation of algorithm GENERATE in Pascal on the IBM

3081-K at Clemson University.

Table 3 shows, for each specified coverage level x, the number of

components (n), the number of states generated (k), the maximum size of the

candidate set occurring (m), and the elapsed CPU time required (t, in seconds).

First, it is observed that as n increases, the number of states needed to achieve

the desired coverage represents a smaller and smaller proportion of the total

number of states 2n. In particular, even for x = .95, less than 0.4% of the states

are generated for n = 20 and less than 0.08% for n = 25. As a result, we should

anticipate that m << g, since in order to achieve the maximum antichain size

A = 1P.1 roughly 50% of the states need to be generated. Comparison of the

values of m in Table 3 with those of p in Table 2 corroborate this expectation.

Table 3 also shows that the size of the candidate set is typically mu

smaller than the number of states generated. This again confirms the superiority

of algorithm GENERATE over the algorithm described in [4]. While the maximum

size m of the candidate set does not get excessively large in these examples, it

does get sufficiently large to require implementation as a heap to allow for the

efficient insertion and deletion of elements.

... .. -. .. ,. . . . :. .. .-. . --..- . -. . :. .:. .. ., .... .- . . *.-..- ... : .. ~ %-.. - ... . .. .. : .
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PERCENT COVERAGE
85% 90% 95%

n k m t k m t k nl t___-
5 4 2 .002 5 2 .002 8 3 .004
6 5 2 .002 7 2 .003 11 3 .005
7 7 2 .003 11 3 .005 16 5 .008
8 9 2 .003 14 5 .006 22 5 .012
9 17 5 .007 24 5 .011 42 5 .022
10 28 5 .015 42 5 .024 74 9 .045
11 35 5 .020 55 8 .033 101 11 .065
12 57 7 .036 90 10 .059 170 14 .121
13 85 10 .055 138 13 .096 268 20 .204
14 122 14 .085 202 17 .152 405 28 .330
15 202 16 .153 336 21 .274 696 39 .611
16 208 19 .171 349 25 .305 740 45 .698
17 344 21 .308 597 37 .559 1275 63 1.301
18 542 32 .525 962 56 .993 2094 97 2.358
19 674 42 .671 1207 65 1.307 2730 133 3.222
20 916 58 .922 1671 88 1.819 3892 183 4.680
21 1324 78 1.464 2453 125 2.926 5877 258 7.962
22 2197 97 2.711 4119 169 5.492 10036 355 15.354
23 2430 109 3.060 4619 187 6.290 11518 408 18.052
24 3711 150 5.217 7200 270 10.981 18291 577 33.533
25 4956 204 6.562 9791 370 14.371 25552 809 46.420

Table 3

Finally, Table 3 shows that the computation time required in these

examples is really quite modest. A multiple regression analysis of the data

shown in the table was performed using the following model:

t ,0 n P3 k log m.

This model accounted for over 99.7% of the variation in the data and appeared

to provide a quite satisfactory fit, thus substantiating the computational

complexity model discussed in Section 3.
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5. Conclusions

The objective of this paper has been to describe a fairly applied setting in

which the identification of an underlying algebraic structure aids considerably in

understanding the original problem. Specifically, being able to place the

components in order of nondecreasing reliability provides a good deal of

information about the relative probability of states in the state space. In addition,

this algebraic viewpoint leads quite naturally to an algorithm for solving the

original problem. It is of interest that the analysis of this derived algorithm itself

is aided by studying an algebraic concept: the maximum-sized antichain in the

lattice. Computational results are presented to complement the theoretical

findings, and they indicate that the algorithm described here is reasonably

effective in practice.
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